设x≥1,y≥1,求证x^2y^2+x+y≥xy(x+y)+1

 我来答
户如乐9318
2022-08-15 · TA获得超过6671个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:141万
展开全部
因为:x≥1,y≥1x-1>=0,y-1>=0,xy-1>=0x^2y^2+x+y-xy(x+y)-1=(x^2y^2-1)-(x+y)(xy-1)=(xy-1)(xy+1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1)>=0所以:x^2y^2+x+y≥xy(x+y)+1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式