设A是m*n实矩阵,证明:R(A'A)=R(AA')=R(A)?

 我来答
少盐刮油c0
2022-10-12 · TA获得超过5516个赞
知道大有可为答主
回答量:5533
采纳率:100%
帮助的人:278万
展开全部
这类问题可用证明齐次线性方程组同解的方法
显然,AX=0 的解都是 A'AX=0 的解.
反之,若X1是 A'AX=0的解
则 A'AX1=0
所以 X1'A'AX1=0
故 (AX1)'(AX1)=0
所以有 AX1=0
即 A'AX=0 的解是 AX=0 的解
故 AX=0 与 A'AX=0 同解
所以 r(A) = r(A'A).
同理有 r(A') = r((A')'A') = r(AA')
而 r(A') = r(A)
所以 r(A)=r(A'A)=r(AA').,9,把A分解成一个可逆的m*m的方阵和一个m*n的分块
其中分块为{E_r 0,0,0},r是A的秩
然后利用矩阵分块的乘法容易证明结论了,1,设A是m*n实矩阵,证明:R(A'A)=R(AA')=R(A)
A'是A的转置矩阵
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式