求证:直径是圆中最长的弦。

 我来答
惠企百科
2022-09-28 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

证明:设AB是园O中的任一直径,CD是圆内任意一条弦,由直径的定义知AB必过圆心O,连结OC,OD,则在三角形OCD中,由三角形任意两边之和大于第三边有OC+OD大于CD,而OC=OD=OA=OB=1/2AB,故AB大于CD。即直径是圆中最长的弦。

直径的其他性质:同一个圆中直径的长度是半径的2倍,可以表示d=2r或r=d/2 。

证明:设有直径AB,根据直径的定义,圆心O在AB上。∵AO=BO=r,∴AB=2r

并且,在同一个圆中弦长为半径2倍的弦都是直径。即若线段d=2r(r是半径长度),那么d是直径。

反证法:假设AB不是直径,那么过点O作直径AB',根据上面的结论有AB'=2r=AB

∴∠ABB'=∠AB'B(等边对等角)

又∵AB'是直径,∴∠ABB'=90°(直径所对的圆周角是直角)

那么△ABB中就有两个直角,与内角和定理矛盾

∴假设不成立,AB是直径。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式