如何用基本不等式来求最小值呢?
1个回答
展开全部
基本不等式的形式为:a+b>=2√ab(等号成立的条件:当且仅当a=b时)因此运用基本不等式时,主要是为了解决最值问题,当遇上a+b或两数相加的形式的时候,题目有要求是求最小值,就用a+b>=2√ab(等号成立的条件。
因为x>5/4,所以4x-5>0
由均值定理,y=4x-2+1/(4x-5)
=(4x-5)+1/(4x-5)+3
≥2√[(4x-5)*1/(4x-5)]+3=5,
当4x-5=1即x=3/2时,y最小值为5。
基本性质
①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
②如果x>y,y>z;那么x>z;(传递性)
③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)
④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;
⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)
以上内容参考:百度百科-不等式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
北京埃德思远电气技术咨询有限公司
2023-07-25 广告
2023-07-25 广告
整定计算是继电保护中的一项重要工作,旨在通过分析计算和整定,确定保护配置方式和整定值,以满足电力系统安全稳定运行的要求。在进行整定计算时,需要考虑到电力系统的各种因素,如电压等级、线路长度、变压器容量、负载情况等等,以及各种保护设备的特性、...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询