怎么证明二元函数可微?
证明二元函数的可微性即证明二元函数可微的一个充分条件:
1、若z=f(x,y)在点M(x,y)的某一邻域内存在偏导数f,且它们在点M处连续,则z=f(x,y)在点M可微。
2、证明:由于偏导数在点M(x,y)连续,0<θ,θ<1,α=0,
△z=f(x+△x,y+△y)-f(x,y)
=[f(x+△x,y+△y)-f(x,y+△y)]+[f(x,y+△y)-f(x+y)]
=f(x+θ△x,y+△y)△x+f(x,y+θ△y)△y
=[f(x,y)+α]△x+[f(x,y)+β]△y
=f(x,y)△x+f(x,y)△y+α△x+β△y
而||≤|α|+|β|,
所以△z=f(x,y)△x-f(x,y)△y+o(ρ),
即f(x,y)在点M可微。
拓展资料:
1、设平面点集D包含于R2,若按照某对应法则f,D中每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数。
2、且称D为f的定义域,P对应的z为f在点P的函数值,记作z=f(x,y);全体函数值的集合称为f的值域.
3、一般来说,二元函数是空间的曲面,如双曲抛物面(马鞍形)z=xy.
4、二元函数可以认为是有两个自变量一个因变量,可以认为是三维的函数,空间函数。
5、f为定义在点集D上的二元函数.P0为D中的一点,对于任意给定的正数ε,总存在相应的正数δ,只要P在P0的δ临域和D的交集内,就有|f(P0)-f(P)|<ε,则称f关于集合D在点P0处连续。
6、若f在D上任何点都连续,则称f是D上的连续函数。
参考资料:百度百科-二元函数