一阶导数,二阶导数,三阶导数各自的作用是干什么的?系统详细一点,或者给个链接也行

梦色十年
高粉答主

2019-07-31 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:2967
采纳率:100%
帮助的人:91.1万
展开全部

一阶导数可以用来描述原函数的增减性。

二阶导数可以用来判断函数在一段区间上的凹凸性,f''(x)>0,则是凹的,f''(x)<0则是凸的。

三阶导数一般不用,可以用来找函数的拐点,拐点的意思是如果曲线f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称这个点为曲线的拐点。

若f(x)在x0的某邻域内具有三阶连续导数,f''(x0)=0,f'''(x0)≠0,那么(x0,f(x0))是f(x)的一个拐点。

扩展资料

二阶导师的性质:

(1)如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

(2)判断函数极大值以及极小值。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

帐号已注销
2021-06-16 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:159万
展开全部

一阶导数可以用来描述原函数的增减性。

二阶导数可以用来判断函数在一段区间上的凹凸性,f''(x)>0,则是凹的,f''(x)<0则是凸的。

三阶导数一般不用,可以用来找函数的拐点,拐点的意思是如果曲线f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称这个点为曲线的拐点。

若f(x)在x0的某邻域内具有三阶连续导数,f''(x0)=0,f'''(x0)≠0,那么(x0,f(x0))是f(x)的一个拐点。

性质

一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:

(1)若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;

(2)若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;

(3)若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Moriarty_Y
推荐于2018-11-22 · TA获得超过255个赞
知道答主
回答量:44
采纳率:0%
帮助的人:21.6万
展开全部
一阶导数可以用来描述原函数的增减性
二阶导数可以用来判断函数在一段区间上的凹凸性,f''(x)>0,则是凹的,f''(x)<0则是凸的
三阶导数一般不用,可以用来找函数的拐点,拐点的意思是如果曲线f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称这个点为曲线的拐点。
若f(x)在x0的某邻域内具有三阶连续导数,f''(x0)=0,f'''(x0)≠0,那么(x0,f(x0))是f(x)的一个拐点
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式