已知{an}是首项为a1,公比q为正数的等比数列,其前n项和为Sn,且有5S2=4S4,设bn=q+Sn (1)求q的值; (2)数列{b
2个回答
展开全部
(1)解:
∵{an}是等比数列,
①当q=1时,即{an}为常数列,Sn=na1
∴5S2=4S4
即5×2a1=4×4a1
∴a1=0
即{an}是常数0的数列. //注:等比数列定义中,只要求q≠0,没有其他限定.
②当q≠1时,Sn=a1(1-qⁿ)/(1-q)
∵5S2=4S4
即5a1(1-q²)/(1-q)=4a1(1-q⁴)/(1-q)
即5(1-q²)=4(1-q⁴)
∴4(q²)²-5q²+1=0
即(q²-1)(4q²-1)=0
即q=±1或者q=±½
又∵q>0,且q≠1
∴q=½
综上所述:
{an}为首项为0,公比为1的等比数列(常数列)
或者{an}为首项为a1,公比为½的等比数列.
(2)解:
①当{an}为常数列时,bn=1+0=1
∴{bn}为首项为1,公比为1的等比数列(即常数1数列)
此时a1=0
②当{an}为首项为a1,公比为½的等比数列时
bn=½+a1(1-½ⁿ)/(1-½)=½+2a1(1-½ⁿ)
∴b(n+1)=½+2a1(1-½×½ⁿ)
若{bn}是等比数列,则b(n+1)/bn为常数,设这个常数为C
则b(n+1)=Cbn
即½+2a1(1-½×½ⁿ)=C[½+2a1(1-½ⁿ)]
整理得(½+2a1)(1-C)=a1×½ⁿ(1-2C)
∵(½+2a1)(1-C)为定值
∴a1×½ⁿ(1-2C)为定值
又∵½ⁿ为不定值
∴a1×½ⁿ(1-2C)=0,即1-2C=0
∴C=½,即{bn}的公比为½
∴(½+2a1)(1-C)=0
∴a1=-¼
综上所述:
a1=0,或者a1=-¼
∵{an}是等比数列,
①当q=1时,即{an}为常数列,Sn=na1
∴5S2=4S4
即5×2a1=4×4a1
∴a1=0
即{an}是常数0的数列. //注:等比数列定义中,只要求q≠0,没有其他限定.
②当q≠1时,Sn=a1(1-qⁿ)/(1-q)
∵5S2=4S4
即5a1(1-q²)/(1-q)=4a1(1-q⁴)/(1-q)
即5(1-q²)=4(1-q⁴)
∴4(q²)²-5q²+1=0
即(q²-1)(4q²-1)=0
即q=±1或者q=±½
又∵q>0,且q≠1
∴q=½
综上所述:
{an}为首项为0,公比为1的等比数列(常数列)
或者{an}为首项为a1,公比为½的等比数列.
(2)解:
①当{an}为常数列时,bn=1+0=1
∴{bn}为首项为1,公比为1的等比数列(即常数1数列)
此时a1=0
②当{an}为首项为a1,公比为½的等比数列时
bn=½+a1(1-½ⁿ)/(1-½)=½+2a1(1-½ⁿ)
∴b(n+1)=½+2a1(1-½×½ⁿ)
若{bn}是等比数列,则b(n+1)/bn为常数,设这个常数为C
则b(n+1)=Cbn
即½+2a1(1-½×½ⁿ)=C[½+2a1(1-½ⁿ)]
整理得(½+2a1)(1-C)=a1×½ⁿ(1-2C)
∵(½+2a1)(1-C)为定值
∴a1×½ⁿ(1-2C)为定值
又∵½ⁿ为不定值
∴a1×½ⁿ(1-2C)=0,即1-2C=0
∴C=½,即{bn}的公比为½
∴(½+2a1)(1-C)=0
∴a1=-¼
综上所述:
a1=0,或者a1=-¼
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询