已知数列{an}是首项为a1、公比q(q≠1)为正数的等比数列,其前n项和为Sn,且有5S2=4S4。设bn=q+Sn.
我已求q=0.5,请您帮忙求一下数列{bn}能否为等比数列?若是,求出a1的值,若不是,请说明理由...
我已求q=0.5,请您帮忙求一下数列{bn}能否为等比数列?若是,求出a1的值,若不是,请说明理由
展开
2个回答
展开全部
S2=a1(1-q²)/(1-q)
S4=a1(1-q^4)/(1-q)
所以
5a1(1-q²)/(1-q)=4a1(1-q^4)/(1-q)
即5(1-q²)=4(1-q²)(1+q²)
5/4=q²+1
得q=0.5
bn=0.5+a1(1-0.5^n)/(1-0.5)
=0.5+2a1(1-0.5^n)
=0.5+2a1-2a1*0.5^n
bn+1/bn
=(0.5+2a1-2a1*0.5^n+1)/(0.5+2a1-2a1*0.5^n)
当0.5+2a1=0,即a1=-0.25时
bn+1/bn
=(-2a1*0.5^n+1))/(-2a1*0.5^n)
=0.5^n+1/0.5^n
=0.5
即当a1=-0.25时,bn为等比数列
S4=a1(1-q^4)/(1-q)
所以
5a1(1-q²)/(1-q)=4a1(1-q^4)/(1-q)
即5(1-q²)=4(1-q²)(1+q²)
5/4=q²+1
得q=0.5
bn=0.5+a1(1-0.5^n)/(1-0.5)
=0.5+2a1(1-0.5^n)
=0.5+2a1-2a1*0.5^n
bn+1/bn
=(0.5+2a1-2a1*0.5^n+1)/(0.5+2a1-2a1*0.5^n)
当0.5+2a1=0,即a1=-0.25时
bn+1/bn
=(-2a1*0.5^n+1))/(-2a1*0.5^n)
=0.5^n+1/0.5^n
=0.5
即当a1=-0.25时,bn为等比数列
2013-04-22
展开全部
解:an=a1q^(n-1)
Sn=a1(1-q^n)/(1-q)
由5S2=4S4得:q=±1/2 an为证等比数列
故q=1/2
bn=q+Sn=1/2+2a1【1-(1/2)^n】=1/2+2a1-2a1(1/2)^n
若bn为等比数列,
则1/2+2a1=0 故a1=-1/4
Sn=a1(1-q^n)/(1-q)
由5S2=4S4得:q=±1/2 an为证等比数列
故q=1/2
bn=q+Sn=1/2+2a1【1-(1/2)^n】=1/2+2a1-2a1(1/2)^n
若bn为等比数列,
则1/2+2a1=0 故a1=-1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询