a+b=1,比较M=x²+y² 与N=(ax+by)² +(bx+ay)²的大小
1个回答
展开全部
解:由a+b=1,可得a²+b²=(a+b)²-2ab=1-2ab
因此,N=(ax+by)² +(bx+ay)²
=(a²x²+2abxy+b²y²)+(b²x²+2abxy+a²y²)
=(a²+b²)x²+(a²+b²)y²+4abxy
=(1-2ab)x²+(1-2ab)y²+4abxy
=x²+y²-2abx²2-2aby²+4abxy
=x²+y²-2ab(x-y)²
于是,M-N=(x²+y² )-[x²+y²-2ab(x-y)²]=2ab(x-y)²
若a,b均为正数,则M-N≥0,即M≥N,当且仅当x=y时等号成立;
若a,b一正一负,则M-N≤0,即M≤N,当且仅当x=y时等号成立;
若a=0,b=1或a=1,b=0,则M=N.
因此,N=(ax+by)² +(bx+ay)²
=(a²x²+2abxy+b²y²)+(b²x²+2abxy+a²y²)
=(a²+b²)x²+(a²+b²)y²+4abxy
=(1-2ab)x²+(1-2ab)y²+4abxy
=x²+y²-2abx²2-2aby²+4abxy
=x²+y²-2ab(x-y)²
于是,M-N=(x²+y² )-[x²+y²-2ab(x-y)²]=2ab(x-y)²
若a,b均为正数,则M-N≥0,即M≥N,当且仅当x=y时等号成立;
若a,b一正一负,则M-N≤0,即M≤N,当且仅当x=y时等号成立;
若a=0,b=1或a=1,b=0,则M=N.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询