设数列a1,a2,a3...,an,...中的每一项都不为0。证明:{an}为等差数列的充分必要条件是:对任何n属于N,都

设数列a1,a2,a3...,an,...中的每一项都不为0。证明:{an}为等差数列的充分必要条件是:对任何n属于N,都有1/a1*a2+1/a2*a3+...1/an... 设数列a1,a2,a3...,an,...中的每一项都不为0。证明:{an}为等差数列的充分必要条件是:对任何n属于N,都有1/a1*a2+1/a2*a3+...1/an*an+1=n/a1*an+1 展开
百度网友8d52f3adf
2010-10-03 · TA获得超过3994个赞
知道小有建树答主
回答量:597
采纳率:0%
帮助的人:980万
展开全部
先证必要性
若为等差数列,则a1=a 差为d
1/(a1a2)+1/(a2a3)+……1/(anan+1)=1/a(a+d)+1/(a+d)(a+2d)+……1/(a+(n-1)d)(a+nd)
裂项得=(1/d)*(1/a-1/(a+d)+1/(a+d)……-1/(a+(n-1)d)+1/(a+(n-1)d)-1/(a+nd)=(1/d)*(1/a-1/(a+nd))=n/a(a+nd)=n/a1*an+1

再证充分性由
1/a1*a2+1/a2*a3+...1/an*an+1=n/a1*an+1
1/a1*a2+1/a2*a3+...1/an-1*an=n/a1*an
两式相减得
1/(an*an+1)=n/a1*an+1-n/a1*an
-->nan-(n-1)an+1=a
又可得(n-1)an-1-(n-2)an=a
再两式相减得(2n-2)an-(n-1)(an-1+an+1)=0
2an-an-1-an+1=0
-->an+1-an=an-an-1得证
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式