初三数学应用题一道,用一元二次方程解!

现在有100米的材料,想围成一个矩形图案,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个材料围了一个长为40米,宽为10米的仓库,但面积只有4... 现在有100米的材料,想围成一个矩形图案,要求面积不小于600平方米,在场地的北面有一堵长为50米的旧墙,有人用这个材料围了一个长为40米,宽为10米的仓库,但面积只有400平方米,显然不符合要求,问应怎样设计矩形的长和宽才能符合要求?

用一元二次方程解。
要详细的过程,正确的答案。
谢谢!
展开
嘉怡之吻
2010-10-03 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4514
采纳率:0%
帮助的人:3371万
展开全部
先给出初级的答案:设宽为X,长为Y。利用那个旧墙为要求矩形一个宽边,从而节省材料扩大面积。长和宽满足同时三个条件就行
1。13.94<X<86.06
2。6.97<Y<43.03
3。2Y+X=100
举一例:X宽为50,Y长为25。此时面积为1250.
下边是高级的答案:设宽为(50+X)“注意X可为负数”,长为Y。利用那个旧墙为要求矩形“一个宽边的一部分”,从而节省材料扩大面积。X和Y要满足下列条件:1。(50+X)*Y>600
2。(50+X)+2Y=100“此时X小于等于0”或 50+2X+2Y=100“此时X大于0”
整理得,X和Y要满足下列条件:

1。当X小于等于0时,-36.06<X<=0 6.97<Y<25 2Y+X=100

2。当X大于0时,0<X<15.89 9.11<Y<25 50+2X+2Y=100
另,使面积最大的方案为:宽为50(利用旧墙为另一宽),长为25,面积1250.
370116
高赞答主

2010-10-03 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
分析:本题符合要求的设计方案不只一个,可以有多个设计方案。因此这是一个开放型的问题。
略解:(1):矩形不靠旧墙。
设矩形仓库的宽为x米,则长为(50-x)米。
由题意的:x(50-x)=600 解得:x=20或 x=30
检验后知x=20符合要求。
因为正方形也是矩形,且周长相等时,正方形的面积更大,所以设计成边长为25米的正方形仓库也符合要求。此时面积为625平方米。
(2):矩形一边靠旧墙。
设矩形的宽为x米,则x(100-2x)=600
解得:x=6.97 或43.03 ,检验知 符合要求.
同时,为了充分利用旧墙,设计为长50米,宽25米的矩形仓库也符合要求。此时面积为1250平方米。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友c856524
2010-10-03
知道答主
回答量:7
采纳率:0%
帮助的人:9.1万
展开全部
设长为x,宽为100/2-x。(单位:m)
x(50-x)大于等于600
解得20小于等于x小于等于30
所以宽也为20-30(m)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式