高中数学微积分题目
有一条直线与抛物线y=x^2相交于A、B两点,线段AB与抛物线所围成的图形面积恒等于4/3,求线段AB的中点P的轨迹方程。...
有一条直线与抛物线y=x^2相交于A、B两点,线段AB与抛物线所围成的图形面积恒等于4/3,求线段AB的中点P的轨迹方程。
展开
展开全部
Let a be the x-coordinate of point A, b be the x-coordinate of point B.
then the points A, B have coordinates (a, a²)(b, b²)
Area between segment AB and the parabola is
[area of the trapezoid] - ʃ [a~b] x² dx = 4/3
which is: (a²+b²)(b-a)/2 - b³/3 + a³/3 = 4/3
which can be simplified into: a²b/2 - a³/6 + b³/6 - ab²/2 = 4/3
which can be factorized into: -(a-b)³/6 = 4/3
solve the equation, we get b-a=2
The coordinates of point P is (a,a²)(b,b²)/2 = ((a+b)/2, (a²+b²)/2)
Substitute b-a=2 into ((a+b)/2, (a²+b²)/2), we get (b-1, b²-2b+2)
which is P(b-1)=b²-2b+2
Let m be the x-coordinate of point P, then m=b-1, b=m+1
P(m)=(m+1)²-2(m+1)+2
P(m)=m²+1
or y=x²+1
做人要厚道。。这种题还是提高一下悬赏分的比较好。。谢谢
then the points A, B have coordinates (a, a²)(b, b²)
Area between segment AB and the parabola is
[area of the trapezoid] - ʃ [a~b] x² dx = 4/3
which is: (a²+b²)(b-a)/2 - b³/3 + a³/3 = 4/3
which can be simplified into: a²b/2 - a³/6 + b³/6 - ab²/2 = 4/3
which can be factorized into: -(a-b)³/6 = 4/3
solve the equation, we get b-a=2
The coordinates of point P is (a,a²)(b,b²)/2 = ((a+b)/2, (a²+b²)/2)
Substitute b-a=2 into ((a+b)/2, (a²+b²)/2), we get (b-1, b²-2b+2)
which is P(b-1)=b²-2b+2
Let m be the x-coordinate of point P, then m=b-1, b=m+1
P(m)=(m+1)²-2(m+1)+2
P(m)=m²+1
or y=x²+1
做人要厚道。。这种题还是提高一下悬赏分的比较好。。谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询