
x^2/16+y^2/4=1椭圆 的点到直线x+2y-根号(2)=0 的最大距离是?
2个回答
展开全部
写成参数方程
x=4cosa
y=2sina
则到直线距离=|4cosa+4sina-√2|/√(1²+2²)
=|4√2sin(a+π/4)-√2|/√5
-1<=sin(a+π/4)<=1
-4√2-√2<=4√2sin(a+π/4)-√2<=4√2-√2
即-5√2<=4√2sin(a+π/4)-√2<=3√2
所以0<=|4√2sin(a+π/4)-√2|<=5√2
所以最大距离=5√2/√5=√10
x=4cosa
y=2sina
则到直线距离=|4cosa+4sina-√2|/√(1²+2²)
=|4√2sin(a+π/4)-√2|/√5
-1<=sin(a+π/4)<=1
-4√2-√2<=4√2sin(a+π/4)-√2<=4√2-√2
即-5√2<=4√2sin(a+π/4)-√2<=3√2
所以0<=|4√2sin(a+π/4)-√2|<=5√2
所以最大距离=5√2/√5=√10
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询