
等边三角形ABC,P是三角形外一点,且∠ABP+∠ACP=180°,求证:PB+PC=PA
展开全部
证明:∵∠ABP+∠ACP=180°
∴ A、B、P、C四点共圆
在AP上取AQ=PC
在△ABQ和△CBP中
∵ AB=BC,AQ=PC
∠BAP=∠BCP(同弧上的圆周角相等)
∴△ABQ≌△CBP
故BQ=BP
又∠APB=∠ACB=60°
∴△BQP是等边三角形
∴ PB=PQ
于是 PA=PQ+QA=PB+PC
∴ A、B、P、C四点共圆
在AP上取AQ=PC
在△ABQ和△CBP中
∵ AB=BC,AQ=PC
∠BAP=∠BCP(同弧上的圆周角相等)
∴△ABQ≌△CBP
故BQ=BP
又∠APB=∠ACB=60°
∴△BQP是等边三角形
∴ PB=PQ
于是 PA=PQ+QA=PB+PC
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询