几个简单的数学证明题
1:Provethatifxisapositiveintegerthatisnotdivisibleby5,thenx4-1isdivisibleby5.(证明如果X是可...
1:
Prove that if x is a positive integer that is not divisible by 5, then x4 -1 is divisible
by 5.
(证明如果X是可被5整除的整数,那么X的四次方-1也能被5整除)
2:
Prove that there do not exist two positive integers x and y such that x2-4y2 = 14.
Additional information: you have all known for a long time that there are many
solutions to the equation x2 + y2 = z2, where x, y and z are all positive integers.
This problem considers a slightly dierent, but similar looking, type of equations.
Hint: use an indirect proof, and start by factoring x2 - 4y2.
(证明不存在两个数使得x方-4y方=14
提示:用间接证明从因式分解x方-4y方开始))
证明结果有可能是真命题也有可能是假命题.
谢谢大神们~~
PS:这不是高等数学证明题,只是非数学课学证明方法的课后题,不会用到大二大三那种很高深的数学..
上面翻译错了。。
(证明如果X是不可被5整除的整数,那么X的四次方-1可以被5整除) 展开
Prove that if x is a positive integer that is not divisible by 5, then x4 -1 is divisible
by 5.
(证明如果X是可被5整除的整数,那么X的四次方-1也能被5整除)
2:
Prove that there do not exist two positive integers x and y such that x2-4y2 = 14.
Additional information: you have all known for a long time that there are many
solutions to the equation x2 + y2 = z2, where x, y and z are all positive integers.
This problem considers a slightly dierent, but similar looking, type of equations.
Hint: use an indirect proof, and start by factoring x2 - 4y2.
(证明不存在两个数使得x方-4y方=14
提示:用间接证明从因式分解x方-4y方开始))
证明结果有可能是真命题也有可能是假命题.
谢谢大神们~~
PS:这不是高等数学证明题,只是非数学课学证明方法的课后题,不会用到大二大三那种很高深的数学..
上面翻译错了。。
(证明如果X是不可被5整除的整数,那么X的四次方-1可以被5整除) 展开
5个回答
展开全部
首先,楼主给出的第一题翻译是错的,第一题英文意思是:证明如果X是“不”可被5整除的整数,那么X的四次方-1也能被5整除。下面给出证明:
1、We consider x=5a+b(a,b are positive integer, and b=1,2,3,4), so x^4-1=(5a+b)^4-1=(25a^2+10ab+b^2)(25a^2+10ab+b^2)=25a^2*(25a^2+10ab+b^2)+10ab*(25a^2+10ab+b^2)+b^2*(25a^2+10ab+b^2)-1.It is obviously that 25a^2(25a^2+10ab+b^2) and 10ab(25a^2+10ab+b^2) is divisible by 5, so we only consider b^2(25a^2+10ab+b^2)-1. The same reason,25a^2*b^2 and 10ab*b^2 is divisible by 5,so the question comes to b^4-1 is divisible by 5.Then b^4-1=(b+1)(b-1)(b^2+1), when b=1,2,3,4, it can be verified that all the b^4-1 is divisible by 5, that's the prove.
2、x^2-4y^2=(x+2y)(x-2y)=14. Since x,y are positive integer, the x+2y and the x-2y must be integer and (x+2y)>(x-2y), (x+2y)>0. And 14>0, so we know that (x-2y)>0. Then we analysis 14 into 2*7 or 1*14, two equations can be here:(x+2y)=14,(x-2y)=1, or (x+2y)=7, (x-2y)=2. But there are no positive integer answer for the two equations. So we prove the topic.
纯手工,望采纳= =、
1、We consider x=5a+b(a,b are positive integer, and b=1,2,3,4), so x^4-1=(5a+b)^4-1=(25a^2+10ab+b^2)(25a^2+10ab+b^2)=25a^2*(25a^2+10ab+b^2)+10ab*(25a^2+10ab+b^2)+b^2*(25a^2+10ab+b^2)-1.It is obviously that 25a^2(25a^2+10ab+b^2) and 10ab(25a^2+10ab+b^2) is divisible by 5, so we only consider b^2(25a^2+10ab+b^2)-1. The same reason,25a^2*b^2 and 10ab*b^2 is divisible by 5,so the question comes to b^4-1 is divisible by 5.Then b^4-1=(b+1)(b-1)(b^2+1), when b=1,2,3,4, it can be verified that all the b^4-1 is divisible by 5, that's the prove.
2、x^2-4y^2=(x+2y)(x-2y)=14. Since x,y are positive integer, the x+2y and the x-2y must be integer and (x+2y)>(x-2y), (x+2y)>0. And 14>0, so we know that (x-2y)>0. Then we analysis 14 into 2*7 or 1*14, two equations can be here:(x+2y)=14,(x-2y)=1, or (x+2y)=7, (x-2y)=2. But there are no positive integer answer for the two equations. So we prove the topic.
纯手工,望采纳= =、
展开全部
1)x^4-1=(x^2-1)(x^2+1)=(x-1)(x+1)(x^2+1)
因为x不能被5整除(你翻错了...)
故有4种可能:
(1)x=5n+1,则由于x^4-1的因子中有x-1,即5n这个因子,故可被5整除
(2)x=5n+2,则由于x^4-1的因子中有x^2+1,即(5n+2)^2+1=25n^2+20n+5,故可被5整除
(3)x=5n+3,则由于x^4-1的因子中有x^2+1,即(5n+3)^2+1=25n^2+30n+10,故可被5整除
(4)x=5n+4,则由于x^4-1的因子中有x+1,即5n+5,故可被5整除
综上获证
2)14=2*7=1*14
x^2-4y^2=(x-2y)(x+2y)
故x要等于2和7的中间数4.5,或1和14的中间数
但两种情况取的x都不是整数(这里你也翻译错了,题目说的是正整数)
故不能取这样的x
故不存在
因为x不能被5整除(你翻错了...)
故有4种可能:
(1)x=5n+1,则由于x^4-1的因子中有x-1,即5n这个因子,故可被5整除
(2)x=5n+2,则由于x^4-1的因子中有x^2+1,即(5n+2)^2+1=25n^2+20n+5,故可被5整除
(3)x=5n+3,则由于x^4-1的因子中有x^2+1,即(5n+3)^2+1=25n^2+30n+10,故可被5整除
(4)x=5n+4,则由于x^4-1的因子中有x+1,即5n+5,故可被5整除
综上获证
2)14=2*7=1*14
x^2-4y^2=(x-2y)(x+2y)
故x要等于2和7的中间数4.5,或1和14的中间数
但两种情况取的x都不是整数(这里你也翻译错了,题目说的是正整数)
故不能取这样的x
故不存在
追问
故x要等于2和7的中间数4.5,或1和14的中间数
x^2-4y^2=(x-2y)(x+2y)
这里不是很明白...为什么x要等于2和7的中间数4.5,或1和14的中间数? y要等于什么?
谢谢~
追答
把(x-2y)记为a,(x+2y)记为b
那么x比a大2y,比b小2y
那么是不是x就在a和b的中间?
而a和b就是14的因子
所以x就在1和14的中间或者2和7的中间
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一个是真的。因分成(x^2+1)(x+1)(x-1),由于不被5整除,那么尾数不为0,5.
尾数为6,1时,x-1被5整除。尾数为9,4时,x+1被5整除。尾数为2,8时x^2+1尾数为5。尾数为3,7时,x^2+1尾数为0.故而都能被整除,成立。
第二个是真的。(应该是两个整数吧)因分成(x-2y)(x+2y)由于2y一定是偶数,那么可证x-2y与x+2y奇偶性相同,且都为整数。则若想乘出偶数14,x-2y与x+2y都得是偶数。而14无法化成两个偶数的乘积形式,故不能。
尾数为6,1时,x-1被5整除。尾数为9,4时,x+1被5整除。尾数为2,8时x^2+1尾数为5。尾数为3,7时,x^2+1尾数为0.故而都能被整除,成立。
第二个是真的。(应该是两个整数吧)因分成(x-2y)(x+2y)由于2y一定是偶数,那么可证x-2y与x+2y奇偶性相同,且都为整数。则若想乘出偶数14,x-2y与x+2y都得是偶数。而14无法化成两个偶数的乘积形式,故不能。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1 假命题
5|x x==5k k∈z
[(5k)^4--1]/5 总余下4个 不能整除
2 假命题
不存在两个数使得x方-4y方=14
x^2 --4y^2 ==14
(x+2y)(x--2y) ==14 ==2*7
不妨令
x+2y==7
x--2y==2
x==9/2 y==5/4 (存在)
5|x x==5k k∈z
[(5k)^4--1]/5 总余下4个 不能整除
2 假命题
不存在两个数使得x方-4y方=14
x^2 --4y^2 ==14
(x+2y)(x--2y) ==14 ==2*7
不妨令
x+2y==7
x--2y==2
x==9/2 y==5/4 (存在)
追问
不好意思上面翻译错了。。
(证明如果X是不可被5整除的整数,那么X的四次方-1可以被5整除)
追答
证明如果X是不可被5整除的整数
总存在余数 1,2,3,4,
下面只要判断余数部分
1^4--1==0 5|0
2^4--1==15 5|15
3^4--1==80 5|80
4^4--1==255 5|255
真命题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |