在△ABC中,已知sinA=sinB+sinC/cosB+cosC,判断三角形的形状?
1个回答
展开全部
解:
sinB+sinC=2*sin[(B+C)/2]*cos[(B-C)/2]
cosB+cosC=2*cos[(B+C)/2]*cos[(B-C)/2]
sinA=sin(B+C)=2*sin[(B+C)/2]*cos[(B+C)/2]
所以
2*sin[(B+C)/2]*cos[(B+C)/2]*2*cos[(B+C)/2]*cos[(B-C)/2]=2*sin[(B+C)/2]*cos[(B-C)/2]
化简得{cos[(B+C)/2]}^2=1/2
(B+C)/2=∏/4
即B+C=∏/2
所以三角形ABC为直角三角形
sinB+sinC=2*sin[(B+C)/2]*cos[(B-C)/2]
cosB+cosC=2*cos[(B+C)/2]*cos[(B-C)/2]
sinA=sin(B+C)=2*sin[(B+C)/2]*cos[(B+C)/2]
所以
2*sin[(B+C)/2]*cos[(B+C)/2]*2*cos[(B+C)/2]*cos[(B-C)/2]=2*sin[(B+C)/2]*cos[(B-C)/2]
化简得{cos[(B+C)/2]}^2=1/2
(B+C)/2=∏/4
即B+C=∏/2
所以三角形ABC为直角三角形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询