双曲线C:x2/a2-y2/b2=1的右焦点为F,过F且斜率为根号3的直线交C于A、B两点,若AF=4FB,则C的离心率为?
2个回答
展开全部
设A(c+4tcos60°,4tsin60°),B(c-tcos60°,-tsin60°),
A,B都在双曲线上,
∴(c+4tcos60°)^2/a^2-(4tsin60°)^2/b^2=1,①
(c-tcos60°)^2/a^2-(-tsin60°)^2/b^2=1,②,
②*16-①,16(c-tcos60°)^2-(c+4tcos60°)^2=15a^2,
16c^2-16ct+4t^2-(c^2+4ct+4t^2)=15a^2,
15c^2-20ct=15a^2,t=3b^2/(4c),
代入②,[c-3b^2/(8c)]^2/a^2-[3√3b^2/(8c)]^2/b^2=1,
(5c^2+3a^2)^2/a^2-27b^2=64c^2,e=c/a,
(5e^2+3)^2-27(e^2-1)=64,
25e^4+3e^2-28=0,e>1,本题无解.
A,B都在双曲线上,
∴(c+4tcos60°)^2/a^2-(4tsin60°)^2/b^2=1,①
(c-tcos60°)^2/a^2-(-tsin60°)^2/b^2=1,②,
②*16-①,16(c-tcos60°)^2-(c+4tcos60°)^2=15a^2,
16c^2-16ct+4t^2-(c^2+4ct+4t^2)=15a^2,
15c^2-20ct=15a^2,t=3b^2/(4c),
代入②,[c-3b^2/(8c)]^2/a^2-[3√3b^2/(8c)]^2/b^2=1,
(5c^2+3a^2)^2/a^2-27b^2=64c^2,e=c/a,
(5e^2+3)^2-27(e^2-1)=64,
25e^4+3e^2-28=0,e>1,本题无解.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询