已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x)————高一数学!!!!!!!!! 30

已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-af(x),试问,是否存在实数a,使得G(x)在(负无穷,-1]上为减函数,并且在(-1,0)上为增函... 已知函数fx=x2+1,且gx=f[f(x)],G(x)=g(x)-a f(x),试问,是否存在实数a,使得G(x)在(负无穷,-1]上为减函数,并且在(-1,0)上为增函数。 展开
松_竹
2010-10-04 · TA获得超过1.4万个赞
知道大有可为答主
回答量:1403
采纳率:0%
帮助的人:2997万
展开全部
假设存在实数a,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
f(x)=x²+1
g(x)=f[f(x)]=[f(x)]²+1=(x²+1)²+1=x^4+2x²+2
G(x)=g(x)-af(x)= x^4+2x²+2-a(x²+1)=x^4+(2-a)x²+2-a

函数G(x)可看作是由函数u=t²+(2-a)t+(2-a)与函数t=x²复合而成,
易知,函数t=x²在(-∞,0)上为减函数,
要使G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数
则函数u=t²+(2-a)t+(2-a) 在(0,1)为减函数,在(1,+∞)上为增函数
∴-(2-a)/2=1,
2-a= -2,
a=4,
故存在a=4,使得G(x)在(-∞,-1 ]为减函数,在(-1,0)上为增函数.
MURPHY0921
2010-10-04
知道答主
回答量:15
采纳率:0%
帮助的人:0
展开全部
不存在。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式