1个回答
展开全部
主要用的是定积分的换元法
f(3x+1)=xe^(x/2)
换元:t=3x+1,x=(t-1)/3
f(x)=((x-1)/3)e^((x-1)/6)
∫((x-1)/3)e^((x-1)/6)dx
=∫((x-1)/3)e^((x-1)/6)d(x-1)
换元:t=x-1
∫(t/3)*e^(t/6)dt
=3∫(t/3)e^(t/6)d(t/3)
再换元:a=t/3
=3∫ae^(a/2)da
上限:0
下限:-1/3
=3(2a-4)e^(a/2)|(-1/3,0)
=3(-4)e^0-3(-2/3-4)e^(-1/6)
=-12+15e^(-1/6)
f(3x+1)=xe^(x/2)
换元:t=3x+1,x=(t-1)/3
f(x)=((x-1)/3)e^((x-1)/6)
∫((x-1)/3)e^((x-1)/6)dx
=∫((x-1)/3)e^((x-1)/6)d(x-1)
换元:t=x-1
∫(t/3)*e^(t/6)dt
=3∫(t/3)e^(t/6)d(t/3)
再换元:a=t/3
=3∫ae^(a/2)da
上限:0
下限:-1/3
=3(2a-4)e^(a/2)|(-1/3,0)
=3(-4)e^0-3(-2/3-4)e^(-1/6)
=-12+15e^(-1/6)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询