等比数列和等差数列题
设数列an满足a1=2,an+1-an=3×2^(2n-1).(1)求数列an的通项公式。(2)令bn=nan,求数列bn的前n项和Sn...
设数列an满足a1=2,an+1-an=3×2^(2n-1).
(1)求数列an的通项公式。(2)令bn=nan,求数列bn的前n项和Sn 展开
(1)求数列an的通项公式。(2)令bn=nan,求数列bn的前n项和Sn 展开
展开全部
(1)由a(n+1)-an=3×2^(2n-1)
得
an-a(n-1)=3×2^(2n-3)
a(n-1)-a(n-2)=3×2^(2n-5)
……
a3-a2=3×2^3
a2-a1=3×2^1
上述(n-1)个式子累加得
an-a1
=3×2^1+3×2^3+……+3×2^(2n-5)+3×2^(2n-3)
=3×2×[1-2^(n-1)]/(1-2)
=6×[2^(n-1)-1]
则an=a1+6×[2^(n-1)-1]=1+6×[2^(n-1)-1]=3*2^n-5
(2)bn=nan
=n(3*2^n-5)
令cn=n*2^n
则cn前n项和Mn=1*2^1+2*2^2+……+n*2^n (式1)
同乘2得2Mn=1*2^2+2*2^3+……+n*2^(n+1) (式2)
则(式2)减(式1)得
Mn=-1*2^1-2^2-2^3……-2^n +n*2^(n+1)
=-1*2^1 +n*2^(n+1)-[2^2+2^3+……+2^n]
=-2+n*2^(n+1)-4[1-2^(n-1)]/(1-2)
=-2+n*2^(n+1)+4-2^(n+1)
=2+(n-1)*2^(n+1)
数列bn的前n项和Sn =3*Mn-(5+10+……+5n)
=3*[2+(n-1)*2^(n+1)]-[(5n+5)n]/2
=6+3(n-1)*2^(n+1)-[(5n+5)n]/2
得
an-a(n-1)=3×2^(2n-3)
a(n-1)-a(n-2)=3×2^(2n-5)
……
a3-a2=3×2^3
a2-a1=3×2^1
上述(n-1)个式子累加得
an-a1
=3×2^1+3×2^3+……+3×2^(2n-5)+3×2^(2n-3)
=3×2×[1-2^(n-1)]/(1-2)
=6×[2^(n-1)-1]
则an=a1+6×[2^(n-1)-1]=1+6×[2^(n-1)-1]=3*2^n-5
(2)bn=nan
=n(3*2^n-5)
令cn=n*2^n
则cn前n项和Mn=1*2^1+2*2^2+……+n*2^n (式1)
同乘2得2Mn=1*2^2+2*2^3+……+n*2^(n+1) (式2)
则(式2)减(式1)得
Mn=-1*2^1-2^2-2^3……-2^n +n*2^(n+1)
=-1*2^1 +n*2^(n+1)-[2^2+2^3+……+2^n]
=-2+n*2^(n+1)-4[1-2^(n-1)]/(1-2)
=-2+n*2^(n+1)+4-2^(n+1)
=2+(n-1)*2^(n+1)
数列bn的前n项和Sn =3*Mn-(5+10+……+5n)
=3*[2+(n-1)*2^(n+1)]-[(5n+5)n]/2
=6+3(n-1)*2^(n+1)-[(5n+5)n]/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询