如图,在△ABC中,AD交BC于点D,点E是BC中点,EF∥AD交CA的延长线于点F ,交AB于点G,若BG=CF。
展开全部
∵BE=CE,BP//EF,
∴CF=FP
∵BP//EF、FH//AB,
∴四边形BHFG为平行四边形,FH=BG
由BG=CF,得FH=FP,∠P=∠PHF,
由BP//EF//AD,得∠CAD=∠P,∠BAD=∠PBA
由AB//FH,得∠PBA=∠PHF
得∠CAD=∠BAD
∴AD平分ABC。
即
追问
要用倍长中线才行
展开全部
证明:
作BP//EF交CF的延长线于点P作FH//AB交BP于点H
因BE=CE,BP//EF所以CF=FP
因BP//EF、FH//AB,所以四边形BHFG为平行四边形,BG=FH
由BG=CF,得FP=FH,∠P=∠PHF,
由BP//EF//AD,得∠CAD=∠P,∠BAD=∠PBA
由FH//AB,得∠PBA=∠PHF
得∠CAD=∠BAD
所以AD平分三角形ABC
作BP//EF交CF的延长线于点P作FH//AB交BP于点H
因BE=CE,BP//EF所以CF=FP
因BP//EF、FH//AB,所以四边形BHFG为平行四边形,BG=FH
由BG=CF,得FP=FH,∠P=∠PHF,
由BP//EF//AD,得∠CAD=∠P,∠BAD=∠PBA
由FH//AB,得∠PBA=∠PHF
得∠CAD=∠BAD
所以AD平分三角形ABC
追问
要用倍长中线做
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询