已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F椭圆与过原点的直线交于A,B两点,连接AF,BF,若|AB|=26
已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F椭圆与过原点的直线交于A,B两点,连接AF,BF,若|AB|=26,|BF|=10,cos∠ABF=513,则...
已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F椭圆与过原点的直线交于A,B两点,连接AF,BF,若|AB|=26,|BF|=10,cos∠ABF=513,则椭圆的离心率为( )A.513B.57C.1317D.617
展开
1个回答
展开全部
如图所示,
在△AFB中,由余弦定理可得:
|AF|2=|AB|2+|BF|2-2|AB||BF|cos∠ABF,
∵|AB|=26,|BF|=10,cos∠ABF=
,
∴|AF|2=262+102-2×26×10×
=576,
解得|AF|=24.
设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.
∴|BF′|=|AF|=24,|FF′|=26.
∴2a=10+24=34,2c=26,解得a=17,c=13.
∴e=
.
故选B.
在△AFB中,由余弦定理可得:
|AF|2=|AB|2+|BF|2-2|AB||BF|cos∠ABF,
∵|AB|=26,|BF|=10,cos∠ABF=
5 |
13 |
∴|AF|2=262+102-2×26×10×
5 |
13 |
解得|AF|=24.
设F′为椭圆的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.
∴|BF′|=|AF|=24,|FF′|=26.
∴2a=10+24=34,2c=26,解得a=17,c=13.
∴e=
13 |
17 |
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询