已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l切,设动圆圆心P的轨迹为E.(Ⅰ)求
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l切,设动圆圆心P的轨迹为E.(Ⅰ)求E的方程;(Ⅱ)若点A,B是E上的两个动点,O为坐标...
已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l切,设动圆圆心P的轨迹为E.(Ⅰ)求E的方程;(Ⅱ)若点A,B是E上的两个动点,O为坐标原点,且OA?OB=-16,求证:直线AB恒过定点.
展开
1个回答
展开全部
(Ⅰ)解:由题意动圆P与直线y=-1相切,且与定圆M:x2+(y-2)2=1外切
所以动点P到M(0,2)的距离与到直线y=-2的距离相等
由抛物线的定义知,点P的轨迹是以C(0,2)为焦点,直线y=-2为准线的抛物线
故所求P的轨迹方程为:x2=8y. …(4分)
(Ⅱ)证明:设直线AB:y=kx+b,A(x1,y1),B(x2,y2),
将直线AB代入到x2=8y中得x2-8kx-8b=0,
所以x1+x2=8k,x1x2=-8b…(6分)
又因为
?
=x1x2+y1y2=x1x2+
=-8b+b2=-16,
∴b=4,…(10分)
∴恒过定点(0,4). …(12分)
所以动点P到M(0,2)的距离与到直线y=-2的距离相等
由抛物线的定义知,点P的轨迹是以C(0,2)为焦点,直线y=-2为准线的抛物线
故所求P的轨迹方程为:x2=8y. …(4分)
(Ⅱ)证明:设直线AB:y=kx+b,A(x1,y1),B(x2,y2),
将直线AB代入到x2=8y中得x2-8kx-8b=0,
所以x1+x2=8k,x1x2=-8b…(6分)
又因为
OA |
OB |
x12x22 |
64 |
∴b=4,…(10分)
∴恒过定点(0,4). …(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询