设f″(x)在[0.π]上连续,且f(0)=2,f(π)=1,求∫π0[f(x)+f″(x)]sinxdx
设f″(x)在[0.π]上连续,且f(0)=2,f(π)=1,求∫π0[f(x)+f″(x)]sinxdx....
设f″(x)在[0.π]上连续,且f(0)=2,f(π)=1,求∫π0[f(x)+f″(x)]sinxdx.
展开
展开全部
因为
[f(x)+f″(x)]sinxdx=
f(x)sinxdx+
f″(x)sinxdx
又f″(x)在[0.π]上连续,且f(0)=2,f(π)=1,
所
f″(x)sinxdx
=
sinxdf′(x)
=f′(x)sin
?
f′(x)cosxdx
=-
cosxdf(x)
=-f(x)cos
?
f(x)sinxdx
=f(π)+f(0)-
f(x)sinxdx
=3-
f(x)sinxdx
所以
[f(x)+f″(x)]sinxdx=
f(x)sinxdx+3?
f(x)sinxdx=3.
∫ | π 0 |
∫ | π 0 |
∫ | π 0 |
又f″(x)在[0.π]上连续,且f(0)=2,f(π)=1,
所
∫ | π 0 |
=
∫ | π 0 |
=f′(x)sin
x| | π 0 |
∫ | π 0 |
=-
∫ | π 0 |
=-f(x)cos
x| | π 0 |
∫ | π 0 |
=f(π)+f(0)-
∫ | π 0 |
=3-
∫ | π 0 |
所以
∫ | π 0 |
∫ | π 0 |
∫ | π 0 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询