△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE
△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB...
△ABC中,AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.(1)如图1,若∠BAC=∠DAE=60°,则△BEF是______三角形;(2)若∠BAC=∠DAE≠60°①如图2,当点D在线段BC上移动,判断△BEF的形状并证明;②当点D在线段BC的延长线上移动,△BEF是什么三角形?请直接写出结论并画出相应的图形.
展开
展开全部
(1)∵AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴△AED和△ABC为等边三角形,
∴∠C=∠ABC=60°,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C=60°,
∵EF∥BC,
∴∠EFB=∠ABC=60°,
∵在△EFB中,∠EFB=∠EBA=60°,
∴△EFB为等边三角形,
(2)①△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠C=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C,
∵EF∥BC,
∴∠EFB=∠ABC,
∵在△EFB中,∠EFB=∠EBA,
∴△EFB为等腰三角形,
②AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.
∵△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠ACB=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠ACD,
∴∠EBF=∠ACB,
∵EF∥BC,
∴∠AFE=∠ABC,
∵∠ABC=∠ACB,
∴∠AFE=∠ACB,
∵在△EFB中,∠EBF=∠AFE,
∴△EFB为等腰三角形.
∴△AED和△ABC为等边三角形,
∴∠C=∠ABC=60°,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C=60°,
∵EF∥BC,
∴∠EFB=∠ABC=60°,
∵在△EFB中,∠EFB=∠EBA=60°,
∴△EFB为等边三角形,
(2)①△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠C=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠C,
∵EF∥BC,
∴∠EFB=∠ABC,
∵在△EFB中,∠EFB=∠EBA,
∴△EFB为等腰三角形,
②AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的左侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作BC的平行线,交直线AB于点F,连接BE.
∵△BEF为等腰三角形,
∵AB=AC,AD=AE,∠BAC=∠DAE,
∴△AED和△ABC为等腰三角形,
∴∠ACB=∠ABC,∠EAB=∠DAC,
∴△EAB≌△DAC,
∴∠EBA=∠ACD,
∴∠EBF=∠ACB,
∵EF∥BC,
∴∠AFE=∠ABC,
∵∠ABC=∠ACB,
∴∠AFE=∠ACB,
∵在△EFB中,∠EBF=∠AFE,
∴△EFB为等腰三角形.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询