设f(x)=sin(2x+φ)(-π<φ<0),f(x)图象的一条对称轴是x=π8.(1)求φ的值;(2)证明:对

设f(x)=sin(2x+φ)(-π<φ<0),f(x)图象的一条对称轴是x=π8.(1)求φ的值;(2)证明:对任意实数c,直线5x-2y+c=0与函数y=f(x)的图... 设f(x)=sin(2x+φ)(-π<φ<0),f(x)图象的一条对称轴是x=π8.(1)求φ的值;(2)证明:对任意实数c,直线5x-2y+c=0与函数y=f(x)的图象不相切. 展开
 我来答
9218abc
2015-01-28 · 超过56用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:139万
展开全部
(1)由对称轴是x=
π
8

得sin(
π
4
+φ)=±1,(2分)
π
4
+φ=kπ+
π
2
(k∈Z),(3分)
所以φ=kπ+
π
4
(k∈Z),(4分)
而-π<φ<0,所以φ=-
3
4
π.(6分)
(2)因为f(x)=sin(2x-
3
4
π).
所以f′(x)=2cos(2x-
3
4
π)≤2,(8分)
即曲线的切线的斜率不大于2,
而直线5x-2y+c=0的斜率k=
5
2
>2,(10分)
所以直线5x-2y+c=0不是函数y=f(x)的切线.(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式