已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO和∠CDO的

已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(... 已知:如图1,当△ABO和△CDO是两个等腰直角三角形,OA与OC,OB与OD,都在同一条直线上,∠ABO和∠CDO的角平分线分别交AC于点E和F.(1)求证:AC=2(BE+DF)(2)如图2,当△ABO和△CDO变为两个全等的直角三角形且OA与OC不在同一条直线上时,连接AC与BD交于点G,其余条件都不变,那么(1)中的结论还成立吗?如果成立请证明,不成立说明你的理由. 展开
 我来答
洲忆号手尉1807
2014-10-16 · 超过71用户采纳过TA的回答
知道答主
回答量:129
采纳率:0%
帮助的人:160万
展开全部
(1)证明:∵△AOB和△ODC是等腰直角三角形,
BE平分直角ABO,DF平分直角ODC,
∴∠A=∠AOB=45°,∠DOC=∠C=45°,∠ABE=∠OBE=∠ODF=∠CDF=45°,
∴△ABE,△OBE,△ODF,△CDF都是等腰直角三角形,
∴BE=AE=OE,DF=OF=CF,
则BE=
1
2
(AE+OE)=
1
2
AO,DF=
1
2
(CF+OF)=
1
2
OC,
∴AC=2(BE+DF).

(2)结论成立,理由如下:
∵Rt△ABO≌Rt△CDO,
∴∠AOB=∠OCD,OA=OC,
∵OA=OC,
∴∠GAO=∠GCO,
∵∠AGB=∠GAO+∠AOB,∠GCD=∠GCO+∠OCD,
∴∠AGB=∠GCD,
∵∠AGB=∠DGC,
∴∠GCD=∠DGC.
∵∠GDC=90°,
∴∠DGC=∠GCD=45°,
∴Rt△GCD是等腰直角三角形,
同理可证Rt△ABG也是等腰直角三角形,
这满足了(1)中所有条件,根据(1)就有相同的结论.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式