在同圆或等圆中,同弧或等弧多对的圆周角相等。怎么证?
已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC.
证明:
情况1:
如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:
图1
∵OA、OC是半径
解:∴OA=OC
∴∠BAC=∠ACO(等边对等角)
∵∠BOC是△AOC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情况2:
如图2,,当圆心O在∠BAC的内部时:
连接AO,并延长AO交⊙O于D
图2
∵OA、OB、OC是半径
解:∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)
∵∠BOD、∠COD分别是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)
∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC
情况3:
如图3,当圆心O在∠BAC的外部时:
图3
连接AO,并延长AO交⊙O于D连接OA,OB。
解:∵OA、OB、OC、是半径
∴∠BAD=∠ABO(等边对等角),∠CAD=∠ACO(OA=OC)
∵∠DOB、∠DOC分别是△AOB、△AOC的外角
∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)
∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)
∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC
(一)如果圆周角ABC的边AB经过原点O,
此时△AOC中,AO=CO--->角A=角OCA
圆心角OBC是△AOC的外角,故角BOC=2角OAC,
因此,角OAC=(1/2)角BOC.所以圆周角BAC=圆心角BOC的一半
(二)如果圆心O在△ABC的内部,则直径AD“分割”△ABC为△ABD和△ACD.前证,角BAD=(1/2)角BOD,角DAC=(1/2)角DOC
因此,角BAD+角DAC=(1/2)(角BOD+角DOC)
所以,角BAC=(1/2)角BOC
(三)如果O在△ABC之外,则直径AD“分割”△ABC为△ABD和△ACD,前证,角BAD=(1/2)角BOD,角DAC=(1/2)角DOC)
所以,角BAD-角CAD=(1/2)(角BOD-角COD)
故角BAC=(1/2)角BOC.
希望对你有所帮助!
广告 您可能关注的内容 |