
(2014?长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证
(2014?长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF....
(2014?长春模拟)如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.
展开
1个回答
展开全部
解答:证明:∵CD=CA,E是AD的中点,
∴∠ACE=∠DCE.
∵CF平分∠ACB,
∴∠ACF=∠BCF.
∵∠ACE+∠DCE+∠ACF+∠BCF=180°,
∴∠ACE+∠ACF=90°.
即∠ECF=90°.
∴CE⊥CF.
∴∠ACE=∠DCE.
∵CF平分∠ACB,
∴∠ACF=∠BCF.
∵∠ACE+∠DCE+∠ACF+∠BCF=180°,
∴∠ACE+∠ACF=90°.
即∠ECF=90°.
∴CE⊥CF.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询