∫(0->Rcosθ)r.√(R^2-r^2)dr
=(-1/2) ∫(0->Rcosθ)√(R^2-r^2) d(R^2-r^2)
=(-1/3) [(R^2-r^2)^(3/2)](0->Rcosθ)
=(-1/3)( R^3|sinθ|^3 -R^3)
∫(-π/2->π/2)[∫(0->Rcosθ)r.√(R^2-r^2)dr ] dθ
=∫(-π/2->π/2)(-1/3)( R^3|sinθ|^3 -R^3) dθ
=-(1/3)R^3 [ ∫(-π/2->π/2)|sinθ|^3 dθ - π ]
=-(1/3)R^3 [ ∫(0->π/2)(sinθ)^3 dθ -∫(-π/2->0)(sinθ)^3 dθ - π ]
=-(1/3)R^3 [ 2∫(0->π/2)(sinθ)^3 dθ - π ]
consider
∫(0->π/2)(sinθ)^3 dθ
=-∫(0->π/2)[1-(cosθ)^2 ]dcosθ
=-[cosθ - (1/3)(cosθ)^3]|(0->π/2)
=1-1/3
=2/3
∫(-π/2->π/2)[∫(0->Rcosθ)r.√(R^2-r^2)dr ] dθ
=-(1/3)R^3 [2∫(0->π/2)(sinθ)^3 dθ - π]
=-(1/3)R^3 [ 4/3 - π ]
=(1/3)R^3 ( π- 4/3 )