离散数学(P↔Q)∪(P∩R)的主析取范式和主合取范式 20

RT最好能告诉我到底怎么求有详细解答过程...... RT
最好能告诉我到底怎么求
有详细解答过程...
展开
 我来答
zzllrr小乐
高粉答主

2015-04-29 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78775

向TA提问 私信TA
展开全部
(P↔Q)∨(P∧R)
⇔((P→Q)∧(Q→P))∨(P∧R) 变成 合取析取
⇔((¬P∨Q)∧(¬Q∨P))∨(P∧R) 变成 合取析取
⇔((¬P∨Q)∧(P∨¬Q))∨(P∧R) 交换律 排序
⇔((¬P∧(P∨¬Q))∨(Q∧(P∨¬Q)))∨(P∧R) 分配律
⇔(¬P∧(P∨¬Q))∨(Q∧(P∨¬Q))∨(P∧R) 结合律
⇔(¬P∧¬Q)∨(Q∧(P∨¬Q))∨(P∧R) 合取析取 吸收率
⇔(¬P∧¬Q)∨(Q∧P)∨(P∧R) 合取析取 吸收率
⇔(¬P∧¬Q)∨(P∧Q)∨(P∧R) 交换律 排序
⇔(¬P∧¬Q∧(¬R∨R))∨(P∧Q∧(¬R∨R))∨(P∧(¬Q∨Q)∧R) 补项
⇔((¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R))∨(P∧Q∧(¬R∨R))∨(P∧(¬Q∨Q)∧R) 分配律2
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(P∧Q∧(¬R∨R))∨(P∧(¬Q∨Q)∧R) 结合律
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨((P∧Q∧¬R)∨(P∧Q∧R))∨(P∧(¬Q∨Q)∧R) 分配律2
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R)∨(P∧(¬Q∨Q)∧R) 结合律
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R)∨((P∧¬Q∧R)∨(P∧Q∧R)) 分配律2
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R)∨(P∧¬Q∧R)∨(P∧Q∧R) 结合律
⇔(¬P∧¬Q∧¬R)∨(¬P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧R) 等幂律

得到主析取范式,再检查遗漏的极小项
⇔m₀∨m₁∨m₅∨m₆∨m₇⇔∑(0,1,5,6,7)
⇔¬∑(2,3,4)⇔∏(2,3,4)⇔M₂∧M₃∧M₄
⇔¬(P∧¬Q∧¬R)∧¬(¬P∧Q∧R)∧¬(¬P∧Q∧¬R) 德摩根定律
⇔(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R) 德摩根定律
得到主合取范式
jxnccwx
推荐于2016-06-13 · TA获得超过2848个赞
知道小有建树答主
回答量:1085
采纳率:75%
帮助的人:610万
展开全部
用真值表法求(P↔Q)∪(P∩R)的主范式
P Q R (P↔Q)∪(P∩R)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0
所以原式的主析取范式为:(P∩Q∩R)∪(P∩Q∩~R)∪(P∩~Q∩R )
主合取范式为:(~P∪Q∪R)∩(P∪~Q∪~R)∩(P∪~Q∪R)∩(P∪Q∪~R)∩(P∪Q∪R)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式