数学题,函数
F(x)=ax^2+bx+c对任何实数x有f(x)大于等于x,且x在(1,3)时,f(x)小于等于0.125*(x+2)^2成立,求函数表达式...
F(x)=ax^2+bx+c对任何实数x有f(x)大于等于x,且x在(1,3)时,f(x)小于等于0.125*(x+2)^2成立,求函数表达式
展开
1个回答
展开全部
对任意x,满足f(x)≥x,于是有f(2)≥2;
而2在区间(1,3)内,所以有f(2)≤(2+2)^/8=2
所以有f(2)=2
f(-2)=4a-2b+c=0,f(2)=4a+2b+c=2,两式相减,可得4b=2,b=1/2
f(5/2)=(25/4)a+(5/2)b+c=(25/4)a+c+5/4
而根据f(x)≤(x+2)^/8,可得f(5/2)≤(5/2 +2)^/8=81/32这样就有(25/4)a+c+(5/4)≤81/32
<=>(25/4)a+c≤41/32
而通过f(-2)=4a-2b+c=0,可以得到4a+c=2b=1,c=1-4a
带入上式:
(25/4)a+c=(9/4)a+(4a+c)+5a=1+(9/4)a≤41/32
<=>a≤1/8
又在f(3/2)处取f(3/2)≤(3/2 +2)^/8=49/32
而f(3/2)=(9/4)a+(3/2)b+c=(9/4)a+c+3/4=(-7/4a)+4a+c+3/4=(-7/4)a+1+3/4=(-7a/4)+7/4
所以有(-7a/4)+7/4≤49/32
<=>a≥1/8
于是a=1/8,可得出c=1/2
所以f(x)=x^/8 +x/2+1/2
而2在区间(1,3)内,所以有f(2)≤(2+2)^/8=2
所以有f(2)=2
f(-2)=4a-2b+c=0,f(2)=4a+2b+c=2,两式相减,可得4b=2,b=1/2
f(5/2)=(25/4)a+(5/2)b+c=(25/4)a+c+5/4
而根据f(x)≤(x+2)^/8,可得f(5/2)≤(5/2 +2)^/8=81/32这样就有(25/4)a+c+(5/4)≤81/32
<=>(25/4)a+c≤41/32
而通过f(-2)=4a-2b+c=0,可以得到4a+c=2b=1,c=1-4a
带入上式:
(25/4)a+c=(9/4)a+(4a+c)+5a=1+(9/4)a≤41/32
<=>a≤1/8
又在f(3/2)处取f(3/2)≤(3/2 +2)^/8=49/32
而f(3/2)=(9/4)a+(3/2)b+c=(9/4)a+c+3/4=(-7/4a)+4a+c+3/4=(-7/4)a+1+3/4=(-7a/4)+7/4
所以有(-7a/4)+7/4≤49/32
<=>a≥1/8
于是a=1/8,可得出c=1/2
所以f(x)=x^/8 +x/2+1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询