锐角a的三角函数值之间有什么关系

 我来答
来自灵通山朴素的西葫芦
2020-12-06 · TA获得超过2088个赞
知道大有可为答主
回答量:4584
采纳率:92%
帮助的人:108万
展开全部
教学目标
1、使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.
2、使学生了解同一个锐角正弦与余弦之间的关系
3、使学生了解正切与正弦、余弦的关系
4、使学生了解三角函数值随锐角的变化而变化的情况
二、教学重点、难点
重点:三个锐角三角函数间几个简单关系

难点:能独立根据三角函数的定义推导出三个锐角三角函数间几个简单关系
三、教学过程
(一)复习引入
叫学生结合直角三角形说出正弦、余弦、正切的定义
(二)实践探索
1、从定义可以看出与有什么关系?与呢?满足这种关系的与又是什么关系呢?
2、利用定义及勾股定理你还能发现与的关系吗?
3、再试试看与和存在特殊关系吗?经过教师引导学生探索之后总结出如下几种关系:
(1)若 那么=或=
(2)(3)
4、在正弦中它的值随锐角的增大而增大还是随锐角的增大而减少?为什么?余弦呢?正切呢?
通过一番讨论后得出:
(1)锐角的正弦值随角度的增加(或减小)而增加(或减小);
(2)锐角的余弦值随角度的增加(或减小)而减小(或增加);
(3)锐角的正切值随角度的增加(或减小)而增加(或减小)。
(三)教学互动 (1)判断题:
i 对于任意锐角α,都有0<sinα<1和0<cosα<1 ( )
ii 对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2 ( )
iii 如果sinα1<sinα2,那么锐角α1<锐角α2I ( )
iv 如果cosα1<cosα2,那么锐角α1>锐角α2 ( )
(2)在Rt△ABC中,下列式子中不一定成立的是______
A.sinA=sinB B.cosA=sinB C.sinA=cosB D.sin(A+B)=sinC
(3)在
鸿膏昕绪
2016-08-08 · TA获得超过564个赞
知道小有建树答主
回答量:377
采纳率:60%
帮助的人:46.3万
展开全部
(sin θ)/(cos θ)=tan θ
追答
θ为α
sin^2 θ+cos^2 θ=l
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
speedydydy
推荐于2019-06-25
知道答主
回答量:13
采纳率:0%
帮助的人:3.1万
展开全部
三角函数恒等变形公式:

  ·初中三角函数两角和与差的三角函数:

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·初中三角函数倍角公式:

  sin(2α)=2sinα·cosα

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  ·初中三角函数三倍角公式:

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  ·初中三角函数半角公式:

  sin^2(α/2)=(1-cosα)/2

  cos^2(α/2)=(1+cosα)/2

  tan^2(α/2)=(1-cosα)/(1+cosα)

  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

  ·初中三角函数万能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  ·初中三角函数积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  ·初中三角函数和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式