在三角形ABC中,角ACB=90°,CD垂直AB,垂足为D,AD=1,BD=4,求CD的长
3个回答
2010-10-05
展开全部
解:
∵∠ACB=90°,
∴∠B+∠A=90°
∵CD⊥AB
∴∠ACD+∠A=90°
∴∠ACD=∠B
∵∠ADC=∠BDC=90°
∴△ACD∽△CBD
∴CD/AD=BD/CD
∴CD²=AD*BD=1*4=4
∴CD=2
∵∠ACB=90°,
∴∠B+∠A=90°
∵CD⊥AB
∴∠ACD+∠A=90°
∴∠ACD=∠B
∵∠ADC=∠BDC=90°
∴△ACD∽△CBD
∴CD/AD=BD/CD
∴CD²=AD*BD=1*4=4
∴CD=2
展开全部
垂足有个定律:
CD²=AD*DB
所以CD=2
给出反证公式
1)当点D在AB边上时成立
∵CD²=AD×DB
∴CD/AD=BD/CD,∠ADC=∠BDC=90度
△ADC∽△BDC
∴∠B=∠ACD,
∠B+∠A=∠ACD+∠A=90度
∴∠C=90度
CD²=AD*DB
所以CD=2
给出反证公式
1)当点D在AB边上时成立
∵CD²=AD×DB
∴CD/AD=BD/CD,∠ADC=∠BDC=90度
△ADC∽△BDC
∴∠B=∠ACD,
∠B+∠A=∠ACD+∠A=90度
∴∠C=90度
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为∠A=90°-∠DCA=∠DCB
又,∠ADC=∠CDB
所以,△ADC相似于△CDB,
所以:AD/CD = CD/BD
CD^2 = AD*BD = 1*4
CD = 2.
又,∠ADC=∠CDB
所以,△ADC相似于△CDB,
所以:AD/CD = CD/BD
CD^2 = AD*BD = 1*4
CD = 2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询