底数和幂是什么
1、底数,数学术语,指幂(n^m)中的n,或者对数(x=logaN)中的 a(a>0且a不等于1)。
比如9=3²中,底数为3;3=log2 8中,底数为2。
2、幂(power)指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫做n的m次幂。比如16=4²中,即为4的2次幂。
数学中的“幂”,是“幂”这个字面意思的引申,“幂”原指盖东西布巾,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的。
故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
幂不符合结合律和交换律。因为十的次方很易计算,只需在后加零即可,所以科学记数法借助此简化记录数的方式;二的次方在计算机科学中很有用。
扩展资料:
幂的大小比较法:
1、计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
2、底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
3、指数比较法
在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
4、求差比较法
将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
5、求商比较法
将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
6、乘方比较法
将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
7、定值比较法
通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。
参考资料:
如:a⁸表示8个a相乘,其中的a是底数,a⁸是幂,⁸是指数。
幂是:数学上指一个数自乘若干次形式。又称乘方。表示一个数字乘若干次的形式,如n个a相乘的幂为a^n,或称a^n为a的n次幂。a称为幂的底数,n称为幂的指数。在扩充的意义下,指数n也可以是分数、负数,也可以是任意实数或复数。
底数和幂的关系:
数学概念:在乘方a^n中,其中的a叫做底数,n叫做指数,结果叫幂。根据函数关系已知底数、指数、幂中任意两个,可以计算剩余一个的数值。
一个数都可以看作自己本身的一次方,指数1通常省略不写。在写分数和负数的n次方时要加括号。四则运算顺序:先乘方,再括号(先小括号,再中括号,最后大括号),接乘除,尾加减。
计算一个数的小数次方,如果那个小数是有理数,就把它化为 (即分数)的形式。特别的,除0以外的任何数的0次方均等于1。0的非正指数幂没有意义。
求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂(power)。其中,a叫做底数(base number),n叫做指数(exponent),当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。