函数f(x)=e(mx-1)-lnx/x有最小值为m
2016-09-19
展开全部
函数f(x)=lnx−
m
x
的定义域为(0,+∞),
f′(x)=
1
x
+
m
x2
.
当f′(x)=0时,
1
x
+
m
x2
=0,此时x=-m,如果m≥0,则无解.
所以,当m≥0时,f′(x)>0,f(x)为增函数,所以f(x)min=f(1)=-m=4,m=-4,矛盾舍去;
当m<0时,
若x∈(0,-m),f′(x)<0,f(x)为减函数,若x∈(-m,+∞),f′(x)>0,f(x)为增函数,
所以f(-m)=ln(-m)+1为极小值,也是最小值;
①当-m<1,即-1<m<0时,f(x)在[1,e]上单调递增,所以f(x)min=f(1)=-m=4,所以m=-4(矛盾);
②当-m>e,即m<-e时,f(x)在[1,e]上单调递减,f(x)min=f(e)=1-
m
e
=4.所以m=-3e.
③当-1≤-m≤e,即-e≤m≤-1时,f(x)在[1,e]上的最小值为f(-m)=ln(-m)+1=4.此时m=-e3<-e(矛盾).
综上m=-3e.
m
x
的定义域为(0,+∞),
f′(x)=
1
x
+
m
x2
.
当f′(x)=0时,
1
x
+
m
x2
=0,此时x=-m,如果m≥0,则无解.
所以,当m≥0时,f′(x)>0,f(x)为增函数,所以f(x)min=f(1)=-m=4,m=-4,矛盾舍去;
当m<0时,
若x∈(0,-m),f′(x)<0,f(x)为减函数,若x∈(-m,+∞),f′(x)>0,f(x)为增函数,
所以f(-m)=ln(-m)+1为极小值,也是最小值;
①当-m<1,即-1<m<0时,f(x)在[1,e]上单调递增,所以f(x)min=f(1)=-m=4,所以m=-4(矛盾);
②当-m>e,即m<-e时,f(x)在[1,e]上单调递减,f(x)min=f(e)=1-
m
e
=4.所以m=-3e.
③当-1≤-m≤e,即-e≤m≤-1时,f(x)在[1,e]上的最小值为f(-m)=ln(-m)+1=4.此时m=-e3<-e(矛盾).
综上m=-3e.
东莞市友贸实业有限公司_
2023-11-22 广告
2023-11-22 广告
第五代双倍数据速率DDR5双列直插式内存模块是一种高速、高性能的内存模块,适用于需要高带宽和低延迟的应用场景。与前几代内存模块相比,DDR5双列直插式内存模块具有更高的数据传输速率和更低的功耗,同时提供了更大的内存容量和更高的可靠性。在数据...
点击进入详情页
本回答由东莞市友贸实业有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询