函数y=1+(sinx+cosx)+(sinx+cosx)²的最大值
2个回答
2017-01-24
展开全部
y=1+(sinx+cosx)+(sinx+cosx)²
= 1+√2sin(x+π/4)+[√2sin(x+π/4)]²
= 1+√2sin(x+π/4)+2sin²(x+π/4)
= 1+2[sin²(x+π/4)+√2/2sin(x+π/4)]
= 1+2[sin(x+π/4)+√2/4]²-1/4
= 2[sin(x+π/4)+√2/4]²+3/4
-1≤sin(x+π/4)≤1
-1+√2/4≤sin(x+π/4)+√2/4≤1+√2/4
0≤2[sin(x+π/4)+√2/4]²≤2(1+√2/4)²
3/4≤2[sin(x+π/4)+√2/4]²+3/4≤2(1+√2/4)²+3/4
最大值 = 2(1+√2/4)²+3/4 = 3+√2
= 1+√2sin(x+π/4)+[√2sin(x+π/4)]²
= 1+√2sin(x+π/4)+2sin²(x+π/4)
= 1+2[sin²(x+π/4)+√2/2sin(x+π/4)]
= 1+2[sin(x+π/4)+√2/4]²-1/4
= 2[sin(x+π/4)+√2/4]²+3/4
-1≤sin(x+π/4)≤1
-1+√2/4≤sin(x+π/4)+√2/4≤1+√2/4
0≤2[sin(x+π/4)+√2/4]²≤2(1+√2/4)²
3/4≤2[sin(x+π/4)+√2/4]²+3/4≤2(1+√2/4)²+3/4
最大值 = 2(1+√2/4)²+3/4 = 3+√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询