高一数学函数奇偶性的一道解答题

已知函数f(x)=ax+b/1+x2是定义在(-1,1)上的奇函数且f(?)=2/5①确定函数f(x)的解析式②用定义证明f(x)在(-1,1)上是增函数③解不等式f(t... 已知函数f(x)=ax+b/1+x2是定义在(-1,1)上的奇函数 且f(?)=2/5
①确定函数f(x)的解析式
②用定义证明f(x)在(-1,1)上是增函数
③解不等式f(t-1)+f(t)<0
展开
巧客手工
2010-10-06 · TA获得超过1279个赞
知道小有建树答主
回答量:764
采纳率:33%
帮助的人:225万
展开全部
解:
1、f(x)=(ax+b)/(1+x^2)
因为:f(x)是奇函数,
所以:f(0)=b=0,即:f(x)=ax/(1+x^2)。
又因为f(1/2)=2/5
所以:a(1/2)/(1+(1/2)^2)=2/5
即:a(1/2)/(1+1/4)=a(2/5)=2/5
所以:a=1
所以,所求解析式为:f(x)=x/(1+x^2)。

2、设x1<x2,且x1,x2∈(-1,1)
f(x2)-f(x1)=x2/(1+x2^2)-x1/(1+x1^2)
=[x2(1+x1^2)-x1(1+x2^2)]/[(1+x1^2)(1+x2^2)]
显然,上式中分母>0,我们只需考查分子。
分子=x2+x2(x1^2)-x1-x1(x2^2)
=(x2-x1)-x1x2(x2-x1)
=(x2-x1)(1-x1x2)
因为x1,x2∈(-1,1),所以x1x2<1,即:1-x1x2>0
又因为x1<x2,所以x2-x1>0
所以:当x2>x1时,f(x2)>f(x1)
即:在(-1,1)定义域内,f(x)是增函数。

补充答案:
呵呵,楼主提出了第三问。那我就试试。
3、解不等式f(t-1)+f(t)<0
解法一:因为:f(x)=x/(1+x^2)。
所以不等式变为:
(t-1)/(1+(t-1)^2)+t/(1+t^2)<0
[(t-1)(t^2+1)+t((t-1)^2+1)]/[(1+(t-1)^2)(1+t^2)]<0
因为分母>0,
所以(t-1)(t^2+1)+t((t-1)^2+1)<0
即:2t^3-3t^2+3t-1<0
t^3+(t-1)^3<0
t^3-(1-t)^3<0
因为t-1,t∈(-1,1),所以t∈(0,1)。
所以上述不等式变为
t^3<(1-t)^3
t<1-t
2t<1
t<1/2
前面我们有t∈(0,1),
所以,不等式的解为:
0<t<1/2

解法二:因为f(x)是奇函数,即:f(-x)=-f(x)
所以不等式变为f(t-1)<f(-t)
又因为:f(x)=x/(1+x^2)
所以:(t-1)/(1+(t-1)^2)<-t/(1+t^2)
(t-1)(t^2+1)<-t((t-1)^2+1)
t^3-t^2+t-1<-t^3+2t^2-2t
t^3<-(t^3-3t^2-3t-1)
t^3<-(t-1)^3
t<-(t-1)
所以:t<1/2。
又因为:对于f(x),有x∈(-1,1)。
所以:t-1,t∈(-1,1),即:t∈(0,1)。
所以,不等式的解为:0<t<1/2

http://zhidao.baidu.com/question/38885517.html?si=4
虫之屋
2010-10-06
知道答主
回答量:29
采纳率:0%
帮助的人:24.2万
展开全部
1, 用定义令f(-x)=-f(x),则求a,得b=0,因为f(2)=2/5
,于是a=1
f(x)=x/(1+x2 )
2,分两步,一在(0,1)设x2<x1,这时,分母越来越小,分子越来越大,于是,整体是增加
二,在(-1,0),设x2<x1,这时,分母是越来越小,分子越大,于是,整体增加
于是,是增函数
三,解不等式f(t-1)+f(t)<0
带入式子就可以算
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式