∫(x+1)/(x²-2x+5)dx
∫[(x+1)/(x²-2x+5)]dx
=½∫[(2x-2+4)/(x²-2x+5)]dx
=½∫[(2x-2)/(x²-2x+5)]dx +2∫[1/(x²-2x+5)]dx
=½ln|x²-2x+5|+∫d(½x-½)/[1+(½x-½)²]
=½ln(x²-2x+5)+arctan(½x-½)+C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C
= (1/2)ln|(1 + sinx)/(1 - sinx)| + C
= - ln|secx - tanx| + C
= ln|secx + tanx| + C
2024-04-11 广告
=(1/2) ∫(2x-2)/(x^2-2x+5) dx +2∫dx/(x^2-2x+5)
=(1/2ln|x^2-2x+5| +2∫dx/(x^2-2x+5)
=(1/2ln|x^2-2x+5| +arctan[(x-1)/2]+C
consider
x^2-2x+5 =(x-1)^2 +4
let
x-1 = 2tanu
dx=2(secu)^2 du
∫dx/(x^2-2x+5)
=∫2(secu)^2 du/(4(secu)^2 )
=(1/2)∫ du
=(1/2)u+C1
=(1/2)arctan[(x-1)/2]+C1
=½∫[(2x-2+4)/(x²-2x+5)]dx
=½∫[(2x-2)/(x²-2x+5)]dx +2∫[1/(x²-2x+5)]dx
=½ln|x²-2x+5|+∫d(½x-½)/[1+(½x-½)²]
=½ln(x²-2x+5)+arctan(½x-½)+C