
一道初中数学题要过程
如图△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:AD²+DB²=DE²...
如图△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证:AD²+DB²=DE²
展开
2个回答
展开全部
取AB的中点F,连接CF。
已知,△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,
可得:△ACB和△ECD都是等腰直角三角形;
所以,AF = BF = CF ,DE² = 2CD² 。
AD²+DB² = (AF-DF)²+(BF+DF)² = (CF-DF)²+(CF+DF)²
= 2(CF²+DF²) = 2CD² = DE² 。
已知,△ACB和△ECD都是等腰三角形,∠ACB=∠ECD=90°,
可得:△ACB和△ECD都是等腰直角三角形;
所以,AF = BF = CF ,DE² = 2CD² 。
AD²+DB² = (AF-DF)²+(BF+DF)² = (CF-DF)²+(CF+DF)²
= 2(CF²+DF²) = 2CD² = DE² 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询