一道高二数学数列

数列:1,1+2,1+2+3,......,1+2+3+......+n如何推导出Sn=n(n+1)(n+2)/6?... 数列:1,1+2,1+2+3,......,1+2+3+......+n
如何推导出Sn=n(n+1)(n+2)/6 ?
展开
文仙灵儿
2010-10-06 · TA获得超过9280个赞
知道大有可为答主
回答量:1340
采纳率:0%
帮助的人:2071万
展开全部
通项是an=1+2+...+n=n(n+1)/2=(n^2+n)/2

所以前n项和是Sn=a1+a2+...+an=(1^2+1)/2+(2^2+2)/2+...+(n^2+n)/2
=[(1^2+2^2+...+n^2)+(1+2+...+n)]/2
=[n(n+1)(2n+1)/6+n(n+1)/2]/2
=n(n+1)(n+2)/6

上面用到的公式1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6是这样来的

利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]=n^2+(n-1)^2+n^2-n=2*n^2+(n-1)^2-n

2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
......
n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式