展开全部
an=a1.q^(n-1), Sn=a1+a2+...+an
(1)
an+Sn = n (1)
a(n-1)+S(n-1) = n-1 (2)
(1)-(2)
an -a(n-1) + an = 1
an = (1/2)a(n-1) +1/2
an -1 = (1/2)[ a(n-1) -1 ]
=> cn = an -1 是等比数列, q=1/2
(2)
an -1 = (1/2)^(n-1) . ( a1 -1 )
an = 1+ (1/2)^(n-1) . ( a1 -1 )
bn
=an - a(n-1)
=1+ (1/2)^(n-1) . ( a1 -1 ) - [ 1+ (1/2)^(n-2) . ( a1 -1 ) ]
=-(a1-1)(1/2)^(n-2)
b1 = a1
a1 =-2(a1-1)
a1= 2/3
ie
bn = (1/3).(1/2)^(n-2)
(1)
an+Sn = n (1)
a(n-1)+S(n-1) = n-1 (2)
(1)-(2)
an -a(n-1) + an = 1
an = (1/2)a(n-1) +1/2
an -1 = (1/2)[ a(n-1) -1 ]
=> cn = an -1 是等比数列, q=1/2
(2)
an -1 = (1/2)^(n-1) . ( a1 -1 )
an = 1+ (1/2)^(n-1) . ( a1 -1 )
bn
=an - a(n-1)
=1+ (1/2)^(n-1) . ( a1 -1 ) - [ 1+ (1/2)^(n-2) . ( a1 -1 ) ]
=-(a1-1)(1/2)^(n-2)
b1 = a1
a1 =-2(a1-1)
a1= 2/3
ie
bn = (1/3).(1/2)^(n-2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询