1/根号下(x^2-a^2)不定积分怎么求啊,a为常数
常数系数为a
变式为:
∫√(x^du2+a^2)dx
=x√(x^2+a^2)-∫xd√(x^2+a^2)
=x√(x^2+a^2)-∫x^2/√(x^2+a^2)dx
=x√(x^2+a^2)-∫(x^2+a^2-a^2)/√(x^2+a^2)dx
=x√(x^2+a^2)-∫[√(x^2+a^2)-a^2/√(x^2+a^2)]dx
移项后为:
2∫√(x^2+a^2)dx=x√(x^2+a^2)+a^2∫1/√(x^2+a^2)dx
=x√(x^2+a^2)+a^2ln|x+√(x^2+a^2)|+2c
所以:
原式=1/2 x√(x^2+a^2)+1/2 a^2ln|x+√(x^2+a^2)|+c
扩展资料:
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C