f(x)+f(2-x)=2f(1)
函数恒成立已知定义域为R的函数y=f(X)满足f(x)+f(2-X)=2f(1),当x≥1时,f(X)=X+4/X,且当X∈[-2,-2]时,n≤f(X)≤m恒成立,则m...
函数 恒成立
已知定义域为R的函数y=f(X)满足f(x)+f(2-X)=2f(1),当x≥1时,f(X)=X+4/X,且当X∈[-2,-2]时,n≤f(X)≤m恒成立,则m-n的最小值是? 展开
已知定义域为R的函数y=f(X)满足f(x)+f(2-X)=2f(1),当x≥1时,f(X)=X+4/X,且当X∈[-2,-2]时,n≤f(X)≤m恒成立,则m-n的最小值是? 展开
展开全部
1)当x≥1时,f(X)=X+4/X
得f(1)=5,f(2)=4,f(0)=2f(1)-f(2)=10-4=6
2)当x∈[-2,1]时,
(2-x)∈[1,4],满足条件当x≥1时,f(X)=X+4/X,则f(2-x)=2-x+4/(2-x)
由f(x)+f(2-X)=2f(1),得
f(x)=2f(1)-f(2-x)=10+(x-2)+4/(x-2)=8+x+4/(x-2),x∈[-2,1],
此时f(-2)=5,且f(1)=5,与1)中f(1)相等,可知在[-2,2]函数f(x)连续可导.——这句很有必要说明!
3)当x∈[1,2]时,对f(x)求导,得f'(x)=1-4/(x^2),令f'(x)=0,解得极值点x=2;
当x∈[-2,1]时,对f(x)求导,得f'(x)=1-4/[(x-2)^2],令f'(x)=0,解得极值点x=0;
因为在[-2,2]函数f(x)连续可导,且f(x)的极值和端点值分别为:
极值:f(2)=4,极值:f(0)=6
端点值:f(-2)=5,f(2)=4
所以f(x)在区间[-2,2]的最小值为f(2)=4,最大值为f(0)=6
4)因为当X∈[-2,-2]时,n≤f(X)≤m恒成立,则有
n≤f(X)最小≤f(X)≤f(X)最大≤m,即n≤f(X)最小=4,m≥f(X)最大=6 ——(n的最大值为4,m的最小值为6)
所以m-n的最小值=m(最小值)-n(最大值)=6-4=2
得f(1)=5,f(2)=4,f(0)=2f(1)-f(2)=10-4=6
2)当x∈[-2,1]时,
(2-x)∈[1,4],满足条件当x≥1时,f(X)=X+4/X,则f(2-x)=2-x+4/(2-x)
由f(x)+f(2-X)=2f(1),得
f(x)=2f(1)-f(2-x)=10+(x-2)+4/(x-2)=8+x+4/(x-2),x∈[-2,1],
此时f(-2)=5,且f(1)=5,与1)中f(1)相等,可知在[-2,2]函数f(x)连续可导.——这句很有必要说明!
3)当x∈[1,2]时,对f(x)求导,得f'(x)=1-4/(x^2),令f'(x)=0,解得极值点x=2;
当x∈[-2,1]时,对f(x)求导,得f'(x)=1-4/[(x-2)^2],令f'(x)=0,解得极值点x=0;
因为在[-2,2]函数f(x)连续可导,且f(x)的极值和端点值分别为:
极值:f(2)=4,极值:f(0)=6
端点值:f(-2)=5,f(2)=4
所以f(x)在区间[-2,2]的最小值为f(2)=4,最大值为f(0)=6
4)因为当X∈[-2,-2]时,n≤f(X)≤m恒成立,则有
n≤f(X)最小≤f(X)≤f(X)最大≤m,即n≤f(X)最小=4,m≥f(X)最大=6 ——(n的最大值为4,m的最小值为6)
所以m-n的最小值=m(最小值)-n(最大值)=6-4=2
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询