在三角形ABC中,∠BAC=90°,AB=AC,M为AC的中点,AE垂直BM于E,延长AE交BC于D,求∠AMB=∠CMD

百度网友211d77254
2010-10-07 · TA获得超过1044个赞
知道小有建树答主
回答量:224
采纳率:0%
帮助的人:304万
展开全部
作CF垂直AD交延长线于F
因为∠BAC=90°,AE垂直BM
所以∠ABM=∠DAC
因为已知AB=AC
所以两个直角三角形ABM和ACF全等
所以∠AMB=∠F(1),AM=CF
因为M为AC的中点
所以AM=MC,推出CM=CF
因为AB=AC,推出∠ABC=∠ACB
又因为∠BAC=90°,CF垂直AD
即AB平行CF
即有∠ABC=∠FCD
推出∠FCD=∠ACB
所以两个三角形FCD和MCD全等
所以∠CMD=∠F(2)
由(1)(2),得到∠AMB=∠CMD
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式