分解因式最初学习是在初中二年级下,那时候只学了有理数,因此一般分解因式的范围都是在有理数范围内分解。例如x^4-3X^2+2分解因式。
在有理数范围x^4-3X^2+2=(x^2-1)(x^2-2)=(x-1)(x+1)(x^2-2),(x^2-2)在有理数范围就是不能分解的了,这个因式分解到此分解彻底。
发展历史
在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。