计算函数y=4-x²和y=x(x-2)所围成图形面积? 5
1个回答
展开全部
y=4-x^2 (1)
y=x(x-2) (2)
from (1) and (2)
4-x^2 =x(x-2)
2x^2-2x-4=0
x^2-x-2=0
(x+1)(x-2)=0
x=-1 or 2
A
=∫(-1->2) [ (4-x^2) -x(x-2) ] dx
=∫(-1->2) (4+2x -2x^2) dx
=[4x+x^2 - (2/3)x^3]|(-1->2)
=(8+4-16/3) -(-4+1+2/3)
=12-16/3 +3 -2/3
=15-6
=9
y=x(x-2) (2)
from (1) and (2)
4-x^2 =x(x-2)
2x^2-2x-4=0
x^2-x-2=0
(x+1)(x-2)=0
x=-1 or 2
A
=∫(-1->2) [ (4-x^2) -x(x-2) ] dx
=∫(-1->2) (4+2x -2x^2) dx
=[4x+x^2 - (2/3)x^3]|(-1->2)
=(8+4-16/3) -(-4+1+2/3)
=12-16/3 +3 -2/3
=15-6
=9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询