求 t^2/(t^4-1)dt 的积分
1个回答
展开全部
∫[t^2/(t^4-1)]dt
=(1/2)∫[(t^2+1+t^2-1)/(t^4-1)]dt
=(1/2)∫[1/(t^2-1)]dt+(1/2)∫[1/(t^2+1)]dt
=(1/4)∫[(t+1-t+1)/(t^2-1)]dt+(1/2)arctant
=(1/4)∫[1/(t-1)]dt-(1/4)∫[1/(t+1)]dt+(1/2)arctant
=(1/4)ln|t-1|-(1/4)ln|t+1|+(1/2)arctant+C
=(1/2)∫[(t^2+1+t^2-1)/(t^4-1)]dt
=(1/2)∫[1/(t^2-1)]dt+(1/2)∫[1/(t^2+1)]dt
=(1/4)∫[(t+1-t+1)/(t^2-1)]dt+(1/2)arctant
=(1/4)∫[1/(t-1)]dt-(1/4)∫[1/(t+1)]dt+(1/2)arctant
=(1/4)ln|t-1|-(1/4)ln|t+1|+(1/2)arctant+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询