可微一定是可导吗?
2个回答
2022-12-07 · 百度认证:IT168官方账号,优质数码领域创作者
关注
展开全部
可微一定可导,可导不一定可微,各变量在此点的偏导数存在为其必要条件,其充要条件还要加上在此函数所表示的广义面中在此点领域内不含有“洞”存在,可含有有限个断点。
在一元函数中,可导与可微等价。
一元函数中可导与可微等价,它们与可积无关。多元函数可微必可导,而反之不成立。
即:在一元函数里,可导是可微的充分必要条件;
在多元函数里,可导是可微的必要条件,可微是可导的充分条件。
扩展资料:
可微:设函数y=f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx,当x=x0时,则记作dy_x=x0。
可导:即设y=f(x)是一个单变量函数,如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询