设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵. 如何证?

 我来答
世纪网络17
2022-06-12 · TA获得超过5906个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:138万
展开全部
考察(AB+BA)^T
(AB+BA)^T
=(AB)^T+(BA)^T
=(B^T)(A^T)+(A^T)(B^T)
由于A,B均为n阶对称矩阵
所以原式=BA+AB
所以AB+BA也是对陈阵.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式